Congruency, Similarity and Polygons

Proving Congruency

1. Triangles have all 3 sides that are of the same length (SSS)

2. Triangles have 2 sides and an included angle that is the same (SAS)

3. Triangles have 2 angles and an included side that is the same (ASA)

4. Triangles have 1 side and the hypotenus that is the same (RHS)(Only applies to right angle triangles only)

Proving Similarity

1. Triangles have 3 pairs of proportional corresponding sides (SSS)

$$\frac{a}{p} = \frac{c}{r} = \frac{b}{a}$$

2. Triangles have 2 pairs of proportional corresponding sides and an identical included angle (SAS)

$$\frac{a}{m} = \frac{b}{n}$$
 and $\angle QPR = \angle YXZ$

3. Triangles have 2 identical angles (AAA)

Area and Volume of Simliar Figures

Area:
$$\frac{A_1}{A_2} = \left(\frac{S_1}{S_2}\right)^2$$
 Volume: $\frac{V_1}{V_2} = \left(\frac{S_1}{S_2}\right)^3$

Polygons

Angles of any n-sided polygon

Sum of interior angles: $(n-2)\times180^{\circ}$

Sum of exterior angles: 360°

Sum of an interior angle and the corresponding exterior angle

= 180°

Angles of any n-sided regular polygon (all sides, interior and exterior angles are equal)

Each interior angle: $\frac{(n-2)\times 180^n}{n}$

Each exterior angle: $\frac{360^{\circ}}{n}$

General names of different n-sided polygons

n =	Name
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon